График функции y = 32*x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = 32*x
f(x)=32xf{\left (x \right )} = 32 x
График функции
02468-8-6-4-2-1010-500500
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
32x=032 x = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=0x_{1} = 0
Численное решение
x1=0x_{1} = 0
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 32*x.
0320 \cdot 32
Результат:
f(0)=0f{\left (0 \right )} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
32=032 = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(32x)=\lim_{x \to -\infty}\left(32 x\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(32x)=\lim_{x \to \infty}\left(32 x\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
32x=32x32 x = - 32 x
- Нет
32x=132x32 x = - -1 \cdot 32 x
- Да
значит, функция
является
нечётной