График пересекает ось Y, когда y равняется 0: подставляем y = 0 в y - y^3. $$- 0$$ Результат: $$f{\left (0 \right )} = 0$$ Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d y} f{\left (y \right )} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d y} f{\left (y \right )} = $$ Первая производная $$- 3 y^{2} + 1 = 0$$ Решаем это уравнение Корни этого ур-ния $$y_{1} = - \frac{\sqrt{3}}{3}$$ $$y_{2} = \frac{\sqrt{3}}{3}$$ Зн. экстремумы в точках:
___ ___
-\/ 3 -2*\/ 3
(-------, --------)
3 9
___ ___
\/ 3 2*\/ 3
(-----, -------)
3 9
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: $$y_{2} = - \frac{\sqrt{3}}{3}$$ Максимумы функции в точках: $$y_{2} = \frac{\sqrt{3}}{3}$$ Убывает на промежутках
[-sqrt(3)/3, sqrt(3)/3]
Возрастает на промежутках
(-oo, -sqrt(3)/3] U [sqrt(3)/3, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d y^{2}} f{\left (y \right )} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d y^{2}} f{\left (y \right )} = $$ Вторая производная $$- 6 y = 0$$ Решаем это уравнение Корни этого ур-ния $$y_{1} = 0$$
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках
(-oo, 0]
Выпуклая на промежутках
[0, oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при y->+oo и y->-oo $$\lim_{y \to -\infty}\left(- y^{3} + y\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты слева не существует $$\lim_{y \to \infty}\left(- y^{3} + y\right) = -\infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции y - y^3, делённой на y при y->+oo и y ->-oo $$\lim_{y \to -\infty}\left(\frac{1}{y} \left(- y^{3} + y\right)\right) = -\infty$$ Возьмём предел значит, наклонной асимптоты слева не существует $$\lim_{y \to \infty}\left(\frac{1}{y} \left(- y^{3} + y\right)\right) = -\infty$$ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-y) и f = -f(-y). Итак, проверяем: $$- y^{3} + y = y^{3} - y$$ - Нет $$- y^{3} + y = - y^{3} - - y$$ - Да значит, функция является нечётной