График y = f(x) = (y^3)/3 ((у в кубе) делить на 3) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = (y^3)/3

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        3
       y 
f(y) = --
       3 
$$f{\left (y \right )} = \frac{y^{3}}{3}$$
Точки пересечения с осью координат X
График функции пересекает ось Y при f = 0
значит надо решить уравнение:
$$\frac{y^{3}}{3} = 0$$
Решаем это уравнение
Точки пересечения с осью Y:

Аналитическое решение
$$y_{1} = 0$$
Численное решение
$$y_{1} = 0$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда y равняется 0:
подставляем y = 0 в y^3/3.
$$\frac{0^{3}}{3}$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d y} f{\left (y \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d y} f{\left (y \right )} = $$
Первая производная
$$y^{2} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$y_{1} = 0$$
Зн. экстремумы в точках:
(0, 0)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумов у функции нет
Возрастает на всей числовой оси
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d y^{2}} f{\left (y \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d y^{2}} f{\left (y \right )} = $$
Вторая производная
$$2 y = 0$$
Решаем это уравнение
Корни этого ур-ния
$$y_{1} = 0$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0, oo)

Выпуклая на промежутках
(-oo, 0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при y->+oo и y->-oo
$$\lim_{y \to -\infty}\left(\frac{y^{3}}{3}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{y \to \infty}\left(\frac{y^{3}}{3}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции y^3/3, делённой на y при y->+oo и y ->-oo
$$\lim_{y \to -\infty}\left(\frac{y^{2}}{3}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{y \to \infty}\left(\frac{y^{2}}{3}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-y) и f = -f(-y).
Итак, проверяем:
$$\frac{y^{3}}{3} = - \frac{y^{3}}{3}$$
- Нет
$$\frac{y^{3}}{3} = - \frac{-1 y^{3}}{3}$$
- Нет
значит, функция
не является
ни чётной ни нечётной