График функции y = 8/x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
       8
f(x) = -
       x
f(x)=8xf{\left(x \right)} = \frac{8}{x}
График функции
02468-8-6-4-2-1010-500500
Область определения функции
Точки, в которых функция точно неопределена:
x1=0x_{1} = 0
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
8x=0\frac{8}{x} = 0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 8/x.
80\frac{8}{0}
Результат:
f(0)=~f{\left(0 \right)} = \tilde{\infty}
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
8x2=0- \frac{8}{x^{2}} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
16x3=0\frac{16}{x^{3}} = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
x1=0x_{1} = 0
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(8x)=0\lim_{x \to -\infty}\left(\frac{8}{x}\right) = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=0y = 0
limx(8x)=0\lim_{x \to \infty}\left(\frac{8}{x}\right) = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=0y = 0
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 8/x, делённой на x при x->+oo и x ->-oo
limx(8x2)=0\lim_{x \to -\infty}\left(\frac{8}{x^{2}}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(8x2)=0\lim_{x \to \infty}\left(\frac{8}{x^{2}}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
8x=8x\frac{8}{x} = - \frac{8}{x}
- Нет
8x=8x\frac{8}{x} = \frac{8}{x}
- Да
значит, функция
является
нечётной
График
График функции y = 8/x /media/krcore-image-pods/hash/xy/f/8b/d00e0c0a08983fa157e6e64b851ba.png