Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
8−2x=0
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
x1=4
Численное решение
x1=4
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 8 - 2*x.
8−2⋅0
Результат:
f(0)=8
Точка:
(0, 8)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
dxdf(x)=0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
dxdf(x)=
первая производная
−2=0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
dx2d2f(x)=0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
dx2d2f(x)=
вторая производная
0=0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
x→−∞lim(8−2x)=∞
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
x→∞lim(8−2x)=−∞
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 8 - 2*x, делённой на x при x->+oo и x ->-oo
x→−∞lim(x8−2x)=−2
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=−2x
x→∞lim(x8−2x)=−2
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=−2x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
8−2x=2x+8
- Нет
8−2x=−2x−8
- Нет
значит, функция
не является
ни чётной ни нечётной