График функции пересекает ось X при f = 0 значит надо решить уравнение: −10cos(x)+18=0 Решаем это уравнение Решения не найдено, может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в 18 - 10*cos(x). −10cos(0)+18 Результат: f(0)=8 Точка:
(0, 8)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная 10sin(x)=0 Решаем это уравнение Корни этого ур-ния x1=0 x2=π Зн. экстремумы в точках:
(0, 8)
(pi, 28)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: x2=0 Максимумы функции в точках: x2=π Убывает на промежутках
[0, pi]
Возрастает на промежутках
(-oo, 0] U [pi, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= Вторая производная 10cos(x)=0 Решаем это уравнение Корни этого ур-ния x1=2π x2=23π
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках
(-oo, pi/2] U [3*pi/2, oo)
Выпуклая на промежутках
[pi/2, 3*pi/2]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(−10cos(x)+18)=⟨8,28⟩ Возьмём предел значит, уравнение горизонтальной асимптоты слева: y=⟨8,28⟩ x→∞lim(−10cos(x)+18)=⟨8,28⟩ Возьмём предел значит, уравнение горизонтальной асимптоты справа: y=⟨8,28⟩
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 18 - 10*cos(x), делённой на x при x->+oo и x ->-oo x→−∞lim(x1(−10cos(x)+18))=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа x→∞lim(x1(−10cos(x)+18))=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: −10cos(x)+18=−10cos(x)+18 - Да −10cos(x)+18=−−1⋅10cos(x)−18 - Нет значит, функция является чётной