График функции y = (x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = x
f(x)=xf{\left (x \right )} = x
График функции
02468-8-6-4-2-1010-2020
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x=0x = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=0x_{1} = 0
Численное решение
x1=0x_{1} = 0
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x.
00
Результат:
f(0)=0f{\left (0 \right )} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
1=01 = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limxx=\lim_{x \to -\infty} x = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limxx=\lim_{x \to \infty} x = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x, делённой на x при x->+oo и x ->-oo
limx1=1\lim_{x \to -\infty} 1 = 1
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=xy = x
limx1=1\lim_{x \to \infty} 1 = 1
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=xy = x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x=xx = - x
- Нет
x=1xx = - -1 x
- Да
значит, функция
является
нечётной