График функции y = x/(4-x^2)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
         x   
f(x) = ------
            2
       4 - x 
f(x)=xx2+4f{\left (x \right )} = \frac{x}{- x^{2} + 4}
График функции
0-40-30-20-1010203040-1010
Область определения функции
Точки, в которых функция точно неопределена:
x1=2x_{1} = -2
x2=2x_{2} = 2
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
xx2+4=0\frac{x}{- x^{2} + 4} = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=0x_{1} = 0
Численное решение
x1=0x_{1} = 0
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x/(4 - x^2).
00+4\frac{0}{- 0 + 4}
Результат:
f(0)=0f{\left (0 \right )} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
2x2(x2+4)2+1x2+4=0\frac{2 x^{2}}{\left(- x^{2} + 4\right)^{2}} + \frac{1}{- x^{2} + 4} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
2x(x24)2(4x2x24+3)=0\frac{2 x}{\left(x^{2} - 4\right)^{2}} \left(- \frac{4 x^{2}}{x^{2} - 4} + 3\right) = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
x1=2x_{1} = -2
x2=2x_{2} = 2

limx2(2x(x24)2(4x2x24+3))=\lim_{x \to -2^-}\left(\frac{2 x}{\left(x^{2} - 4\right)^{2}} \left(- \frac{4 x^{2}}{x^{2} - 4} + 3\right)\right) = \infty
limx2+(2x(x24)2(4x2x24+3))=\lim_{x \to -2^+}\left(\frac{2 x}{\left(x^{2} - 4\right)^{2}} \left(- \frac{4 x^{2}}{x^{2} - 4} + 3\right)\right) = -\infty
- пределы не равны, зн.
x1=2x_{1} = -2
- является точкой перегиба
limx2(2x(x24)2(4x2x24+3))=\lim_{x \to 2^-}\left(\frac{2 x}{\left(x^{2} - 4\right)^{2}} \left(- \frac{4 x^{2}}{x^{2} - 4} + 3\right)\right) = \infty
limx2+(2x(x24)2(4x2x24+3))=\lim_{x \to 2^+}\left(\frac{2 x}{\left(x^{2} - 4\right)^{2}} \left(- \frac{4 x^{2}}{x^{2} - 4} + 3\right)\right) = -\infty
- пределы не равны, зн.
x2=2x_{2} = 2
- является точкой перегиба

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0, oo)

Выпуклая на промежутках
(-oo, 0]
Вертикальные асимптоты
Есть:
x1=2x_{1} = -2
x2=2x_{2} = 2
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(xx2+4)=0\lim_{x \to -\infty}\left(\frac{x}{- x^{2} + 4}\right) = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=0y = 0
limx(xx2+4)=0\lim_{x \to \infty}\left(\frac{x}{- x^{2} + 4}\right) = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=0y = 0
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x/(4 - x^2), делённой на x при x->+oo и x ->-oo
limx1x2+4=0\lim_{x \to -\infty} \frac{1}{- x^{2} + 4} = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx1x2+4=0\lim_{x \to \infty} \frac{1}{- x^{2} + 4} = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
xx2+4=xx2+4\frac{x}{- x^{2} + 4} = - \frac{x}{- x^{2} + 4}
- Нет
xx2+4=1xx2+4\frac{x}{- x^{2} + 4} = - \frac{-1 x}{- x^{2} + 4}
- Да
значит, функция
является
нечётной