График y = f(x) = x/2-cos(x) (х делить на 2 минус косинус от (х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = x/2-cos(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
       x         
f(x) = - - cos(x)
       2         
$$f{\left(x \right)} = \frac{x}{2} - \cos{\left(x \right)}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{x}{2} - \cos{\left(x \right)} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Численное решение
$$x_{1} = 1.02986652932226$$
$$x_{2} = 1.02986652932226$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x/2 - cos(x).
$$- \cos{\left(0 \right)} + \frac{0}{2}$$
Результат:
$$f{\left(0 \right)} = -1$$
Точка:
(0, -1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left(x \right)} = $$
первая производная
$$\sin{\left(x \right)} + \frac{1}{2} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = - \frac{\pi}{6}$$
$$x_{2} = \frac{7 \pi}{6}$$
Зн. экстремумы в точках:
           ___      
 -pi     \/ 3    pi 
(----, - ----- - --)
  6        2     12 

         ___        
 7*pi  \/ 3    7*pi 
(----, ----- + ----)
  6      2      12  


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = - \frac{\pi}{6}$$
Максимумы функции в точках:
$$x_{1} = \frac{7 \pi}{6}$$
Убывает на промежутках
$$\left[- \frac{\pi}{6}, \frac{7 \pi}{6}\right]$$
Возрастает на промежутках
$$\left(-\infty, - \frac{\pi}{6}\right] \cup \left[\frac{7 \pi}{6}, \infty\right)$$
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
вторая производная
$$\cos{\left(x \right)} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{\pi}{2}$$
$$x_{2} = \frac{3 \pi}{2}$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
$$\left(-\infty, \frac{\pi}{2}\right] \cup \left[\frac{3 \pi}{2}, \infty\right)$$
Выпуклая на промежутках
$$\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{x}{2} - \cos{\left(x \right)}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{x}{2} - \cos{\left(x \right)}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x/2 - cos(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\frac{x}{2} - \cos{\left(x \right)}}{x}\right) = \frac{1}{2}$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = \frac{x}{2}$$
$$\lim_{x \to \infty}\left(\frac{\frac{x}{2} - \cos{\left(x \right)}}{x}\right) = \frac{1}{2}$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = \frac{x}{2}$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{x}{2} - \cos{\left(x \right)} = - \frac{x}{2} - \cos{\left(x \right)}$$
- Нет
$$\frac{x}{2} - \cos{\left(x \right)} = \frac{x}{2} + \cos{\left(x \right)}$$
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = x/2-cos(x) /media/krcore-image-pods/hash/xy/e/a0/d7bd70e9dc249fd8362231c506d81.png