График y = f(x) = x-cbrt(x)^2 (х минус кубический корень из (х) в квадрате) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = x-cbrt(x)^2

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
                2
           3 ___ 
f(x) = x - \/ x  
$$f{\left (x \right )} = - x^{\frac{2}{3}} + x$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$- x^{\frac{2}{3}} + x = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = 1$$
Численное решение
$$x_{1} = 1$$
$$x_{2} = 0$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x - (x^(1/3))^2.
$$- 0$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$1 - \frac{2}{3 \sqrt[3]{x}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{8}{27}$$
Зн. экстремумы в точках:
(8/27, -4/27)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = \frac{8}{27}$$
Максимумов у функции нет
Убывает на промежутках
[8/27, oo)

Возрастает на промежутках
(-oo, 8/27]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{2}{9 x^{\frac{4}{3}}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(- x^{\frac{2}{3}} + x\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(- x^{\frac{2}{3}} + x\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x - (x^(1/3))^2, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(- x^{\frac{2}{3}} + x\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(- x^{\frac{2}{3}} + x\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- x^{\frac{2}{3}} + x = - x - \left(- x\right)^{\frac{2}{3}}$$
- Нет
$$- x^{\frac{2}{3}} + x = - -1 x - - \left(- x\right)^{\frac{2}{3}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной