Область определения функции
Точки, в которых функция точно неопределена:
x1=0
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x−x1log(x)=0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x - log(x)/x.
−∞~
Результат:
f(0)=∞~
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
dxdf(x)=0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
dxdf(x)=
Первая производная
1+x21log(x)−x21=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Зн. экстремумы в точках:
(1, 1)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=1
Максимумов у функции нет
Убывает на промежутках
[1, oo)
Возрастает на промежутках
(-oo, 1]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
dx2d2f(x)=0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
dx2d2f(x)=
Вторая производная
x31(−2log(x)+3)=0
Решаем это уравнение
Корни этого ур-ния
x1=e23
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
x1=0
x→0−lim(x31(−2log(x)+3))=−∞
x→0+lim(x31(−2log(x)+3))=∞
- пределы не равны, зн.
x1=0
- является точкой перегиба
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, exp(3/2)]
Выпуклая на промежутках
[exp(3/2), oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
x→−∞lim(x−x1log(x))=−∞
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
x→∞lim(x−x1log(x))=∞
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x - log(x)/x, делённой на x при x->+oo и x ->-oo
x→−∞lim(x1(x−x1log(x)))=1
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=x
x→∞lim(x1(x−x1log(x)))=1
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x−x1log(x)=−x+x1log(−x)
- Нет
x−x1log(x)=−−1x−x1log(−x)
- Нет
значит, функция
не является
ни чётной ни нечётной