График функции y = x-log(x+4)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = x - log(x + 4)
f(x)=xlog(x+4)f{\left (x \right )} = x - \log{\left (x + 4 \right )}
График функции
70123456-3-2-1-1010
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
xlog(x+4)=0x - \log{\left (x + 4 \right )} = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=4LambertW(1e4)x_{1} = -4 - \operatorname{LambertW}{\left (- \frac{1}{e^{4}} \right )}
x2=4LambertW(1e4,1)x_{2} = -4 - \operatorname{LambertW}{\left (- \frac{1}{e^{4}},-1 \right )}
Численное решение
x1=1.74903138601x_{1} = 1.74903138601
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x - log(x + 4).
log(4)- \log{\left (4 \right )}
Результат:
f(0)=log(4)f{\left (0 \right )} = - \log{\left (4 \right )}
Точка:
(0, -log(4))
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
11x+4=01 - \frac{1}{x + 4} = 0
Решаем это уравнение
Корни этого ур-ния
x1=3x_{1} = -3
Зн. экстремумы в точках:
(-3, -3)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=3x_{1} = -3
Максимумов у функции нет
Убывает на промежутках
[-3, oo)

Возрастает на промежутках
(-oo, -3]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
1(x+4)2=0\frac{1}{\left(x + 4\right)^{2}} = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(xlog(x+4))=\lim_{x \to -\infty}\left(x - \log{\left (x + 4 \right )}\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(xlog(x+4))=\lim_{x \to \infty}\left(x - \log{\left (x + 4 \right )}\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x - log(x + 4), делённой на x при x->+oo и x ->-oo
limx(1x(xlog(x+4)))=1\lim_{x \to -\infty}\left(\frac{1}{x} \left(x - \log{\left (x + 4 \right )}\right)\right) = 1
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=xy = x
limx(1x(xlog(x+4)))=1\lim_{x \to \infty}\left(\frac{1}{x} \left(x - \log{\left (x + 4 \right )}\right)\right) = 1
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=xy = x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
xlog(x+4)=xlog(x+4)x - \log{\left (x + 4 \right )} = - x - \log{\left (- x + 4 \right )}
- Нет
xlog(x+4)=1xlog(x+4)x - \log{\left (x + 4 \right )} = - -1 x - - \log{\left (- x + 4 \right )}
- Нет
значит, функция
не является
ни чётной ни нечётной