Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x - \log{\left (x^{2} \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Численное решение
$$x_{1} = -0.703467422498$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x - log(x^2).
$$- \log{\left (0^{2} \right )}$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$1 - \frac{2}{x} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 2$$
Зн. экстремумы в точках:
(2, 2 - log(4))
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = 2$$
Максимумов у функции нет
Убывает на промежутках
[2, oo)
Возрастает на промежутках
(-oo, 2]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{2}{x^{2}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x - \log{\left (x^{2} \right )}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x - \log{\left (x^{2} \right )}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x - log(x^2), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x - \log{\left (x^{2} \right )}\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(x - \log{\left (x^{2} \right )}\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x - \log{\left (x^{2} \right )} = - x - \log{\left (x^{2} \right )}$$
- Нет
$$x - \log{\left (x^{2} \right )} = - -1 x - - \log{\left (x^{2} \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной