Точки, в которых функция точно неопределена: x1=3
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0 значит надо решить уравнение: x−3x−1=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=1 Численное решение x1=1
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в (x - 1*1)/(x - 1*3). (−1)3+0(−1)1+0 Результат: f(0)=31 Точка:
(0, 1/3)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= первая производная −(x−3)2x−1+x−31=0 Решаем это уравнение Решения не найдены, возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= вторая производная (x−3)22(−1+x−3x−1)=0 Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Вертикальные асимптоты
Есть: x1=3
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(x−3x−1)=1 Возьмём предел значит, уравнение горизонтальной асимптоты слева: y=1 x→∞lim(x−3x−1)=1 Возьмём предел значит, уравнение горизонтальной асимптоты справа: y=1
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (x - 1*1)/(x - 1*3), делённой на x при x->+oo и x ->-oo x→−∞lim(x(x−3)x−1)=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа x→∞lim(x(x−3)x−1)=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x−3x−1=−x−3−x−1 - Нет x−3x−1=−−x−3−x−1 - Нет значит, функция не является ни чётной ни нечётной