График y = f(x) = (x-5)^2+1 ((х минус 5) в квадрате плюс 1) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = (x-5)^2+1

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
              2    
f(x) = (x - 5)  + 1
$$f{\left (x \right )} = \left(x - 5\right)^{2} + 1$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\left(x - 5\right)^{2} + 1 = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (x - 5)^2 + 1.
$$1 + \left(-5\right)^{2}$$
Результат:
$$f{\left (0 \right )} = 26$$
Точка:
(0, 26)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$2 x - 10 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 5$$
Зн. экстремумы в точках:
(5, 1)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = 5$$
Максимумов у функции нет
Убывает на промежутках
[5, oo)

Возрастает на промежутках
(-oo, 5]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$2 = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\left(x - 5\right)^{2} + 1\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\left(x - 5\right)^{2} + 1\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (x - 5)^2 + 1, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(\left(x - 5\right)^{2} + 1\right)\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(\left(x - 5\right)^{2} + 1\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\left(x - 5\right)^{2} + 1 = \left(- x - 5\right)^{2} + 1$$
- Нет
$$\left(x - 5\right)^{2} + 1 = - \left(- x - 5\right)^{2} - 1$$
- Нет
значит, функция
не является
ни чётной ни нечётной