График функции y = (x+4)^3

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
              3
f(x) = (x + 4) 
f(x)=(x+4)3f{\left(x \right)} = \left(x + 4\right)^{3}
График функции
02468-8-6-4-2-1010-50005000
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(x+4)3=0\left(x + 4\right)^{3} = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=4x_{1} = -4
Численное решение
x1=4x_{1} = -4
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (x + 4)^3.
(0+4)3\left(0 + 4\right)^{3}
Результат:
f(0)=64f{\left(0 \right)} = 64
Точка:
(0, 64)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
3(x+4)2=03 \left(x + 4\right)^{2} = 0
Решаем это уравнение
Корни этого ур-ния
x1=4x_{1} = -4
Зн. экстремумы в точках:
(-4, 0)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумов у функции нет
Возрастает на всей числовой оси
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
6(x+4)=06 \left(x + 4\right) = 0
Решаем это уравнение
Корни этого ур-ния
x1=4x_{1} = -4

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[4,)\left[-4, \infty\right)
Выпуклая на промежутках
(,4]\left(-\infty, -4\right]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x+4)3=\lim_{x \to -\infty} \left(x + 4\right)^{3} = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x+4)3=\lim_{x \to \infty} \left(x + 4\right)^{3} = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (x + 4)^3, делённой на x при x->+oo и x ->-oo
limx((x+4)3x)=\lim_{x \to -\infty}\left(\frac{\left(x + 4\right)^{3}}{x}\right) = \infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx((x+4)3x)=\lim_{x \to \infty}\left(\frac{\left(x + 4\right)^{3}}{x}\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
(x+4)3=(4x)3\left(x + 4\right)^{3} = \left(4 - x\right)^{3}
- Нет
(x+4)3=(4x)3\left(x + 4\right)^{3} = - \left(4 - x\right)^{3}
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = (x+4)^3 /media/krcore-image-pods/hash/xy/c/bf/a67a616949206ff9b9dd477b51c78.png