График y = f(x) = (x+2)^(1/3) ((х плюс 2) в степени (1 делить на 3)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = (x+2)^(1/3)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
       3 _______
f(x) = \/ x + 2 
$$f{\left (x \right )} = \sqrt[3]{x + 2}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\sqrt[3]{x + 2} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = -2$$
Численное решение
$$x_{1} = -2$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (x + 2)^(1/3).
$$\sqrt[3]{2}$$
Результат:
$$f{\left (0 \right )} = \sqrt[3]{2}$$
Точка:
(0, 2^(1/3))
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{1}{3 \left(x + 2\right)^{\frac{2}{3}}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- \frac{2}{9 \left(x + 2\right)^{\frac{5}{3}}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} \sqrt[3]{x + 2} = \infty \sqrt[3]{-1}$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \infty \sqrt[3]{-1}$$
$$\lim_{x \to \infty} \sqrt[3]{x + 2} = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (x + 2)^(1/3), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \sqrt[3]{x + 2}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x} \sqrt[3]{x + 2}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\sqrt[3]{x + 2} = \sqrt[3]{- x + 2}$$
- Нет
$$\sqrt[3]{x + 2} = - \sqrt[3]{- x + 2}$$
- Нет
значит, функция
не является
ни чётной ни нечётной