График функции y = x+1

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = x + 1
f(x)=x+1f{\left(x \right)} = x + 1
График функции
02468-8-6-4-2-1010-2020
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x+1=0x + 1 = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=1x_{1} = -1
Численное решение
x1=1x_{1} = -1
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x + 1.
0+10 + 1
Результат:
f(0)=1f{\left(0 \right)} = 1
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
1=01 = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
0=00 = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x+1)=\lim_{x \to -\infty}\left(x + 1\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x+1)=\lim_{x \to \infty}\left(x + 1\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x + 1, делённой на x при x->+oo и x ->-oo
limx(x+1x)=1\lim_{x \to -\infty}\left(\frac{x + 1}{x}\right) = 1
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=xy = x
limx(x+1x)=1\lim_{x \to \infty}\left(\frac{x + 1}{x}\right) = 1
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=xy = x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x+1=1xx + 1 = 1 - x
- Нет
x+1=x1x + 1 = x - 1
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = x+1 /media/krcore-image-pods/hash/xy/4/aa/32a16f972cefa67a25e8d649905ff.png