Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 1$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x + \frac{1}{x - 1} - 3 = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = 2$$
Численное решение
$$x_{1} = 2.00000098584$$
$$x_{2} = 1.99999915634$$
$$x_{3} = 2$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x + 1/(x - 1) - 3.
$$-3 + \frac{1}{-1}$$
Результат:
$$f{\left (0 \right )} = -4$$
Точка:
(0, -4)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$1 - \frac{1}{\left(x - 1\right)^{2}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = 2$$
Зн. экстремумы в точках:
(0, -4)
(2, 0)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 2$$
Максимумы функции в точках:
$$x_{2} = 0$$
Убывает на промежутках
(-oo, 0] U [2, oo)
Возрастает на промежутках
[0, 2]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{2}{\left(x - 1\right)^{3}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x + \frac{1}{x - 1} - 3\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x + \frac{1}{x - 1} - 3\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x + 1/(x - 1) - 3, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x + \frac{1}{x - 1} - 3\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(x + \frac{1}{x - 1} - 3\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x + \frac{1}{x - 1} - 3 = - x - 3 + \frac{1}{- x - 1}$$
- Нет
$$x + \frac{1}{x - 1} - 3 = - -1 x + 3 - \frac{1}{- x - 1}$$
- Нет
значит, функция
не является
ни чётной ни нечётной