График y = f(x) = x+tan(x) (х плюс тангенс от (х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = x+tan(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = x + tan(x)
$$f{\left (x \right )} = x + \tan{\left (x \right )}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x + \tan{\left (x \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Численное решение
$$x_{1} = -4.91318043943$$
$$x_{2} = -7.97866571241$$
$$x_{3} = 2.02875783811$$
$$x_{4} = -2.02875783811$$
$$x_{5} = 0$$
$$x_{6} = 7.97866571241$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x + tan(x).
$$\tan{\left (0 \right )}$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\tan^{2}{\left (x \right )} + 2 = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0, oo)

Выпуклая на промежутках
(-oo, 0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
True

Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \lim_{x \to -\infty}\left(x + \tan{\left (x \right )}\right)$$
True

Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \lim_{x \to \infty}\left(x + \tan{\left (x \right )}\right)$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x + tan(x), делённой на x при x->+oo и x ->-oo
True

Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x \lim_{x \to -\infty}\left(\frac{1}{x} \left(x + \tan{\left (x \right )}\right)\right)$$
True

Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x \lim_{x \to \infty}\left(\frac{1}{x} \left(x + \tan{\left (x \right )}\right)\right)$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x + \tan{\left (x \right )} = - x - \tan{\left (x \right )}$$
- Нет
$$x + \tan{\left (x \right )} = - -1 x - - \tan{\left (x \right )}$$
- Да
значит, функция
является
нечётной