График y = f(x) = (x+3)^2-1 ((х плюс 3) в квадрате минус 1) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = (x+3)^2-1

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
              2    
f(x) = (x + 3)  - 1
$$f{\left(x \right)} = \left(x + 3\right)^{2} - 1$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\left(x + 3\right)^{2} - 1 = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = -4$$
$$x_{2} = -2$$
Численное решение
$$x_{1} = -2$$
$$x_{2} = -4$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (x + 3)^2 - 1*1.
$$\left(-1\right) 1 + \left(0 + 3\right)^{2}$$
Результат:
$$f{\left(0 \right)} = 8$$
Точка:
(0, 8)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left(x \right)} = $$
первая производная
$$2 x + 6 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -3$$
Зн. экстремумы в точках:
(-3, -1*1)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = -3$$
Максимумов у функции нет
Убывает на промежутках
$$\left[-3, \infty\right)$$
Возрастает на промежутках
$$\left(-\infty, -3\right]$$
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
вторая производная
$$2 = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\left(x + 3\right)^{2} - 1\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\left(x + 3\right)^{2} - 1\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (x + 3)^2 - 1*1, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(x + 3\right)^{2} - 1}{x}\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{\left(x + 3\right)^{2} - 1}{x}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\left(x + 3\right)^{2} - 1 = \left(3 - x\right)^{2} - 1$$
- Нет
$$\left(x + 3\right)^{2} - 1 = 1 - \left(3 - x\right)^{2}$$
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = (x+3)^2-1 /media/krcore-image-pods/hash/xy/d/0c/f3628eccccc4f23c291fa0850f9c7.png