График функции
-1.0 -0.8 -0.6 -0.4 -0.2 1.0 0.0 0.2 0.4 0.6 0.8 0.0 1.0
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0 значит надо решить уравнение:x atan ( x ) = 0 x \operatorname{atan}{\left (x \right )} = 0 x atan ( x ) = 0 Решаем это уравнение Точки пересечения с осью X:Аналитическое решение x 1 = 0 x_{1} = 0 x 1 = 0 Численное решение x 1 = 5.16813093799 ⋅ 1 0 − 7 x_{1} = 5.16813093799 \cdot 10^{-7} x 1 = 5.16813093799 ⋅ 1 0 − 7 x 2 = 5.17072698985 ⋅ 1 0 − 7 x_{2} = 5.17072698985 \cdot 10^{-7} x 2 = 5.17072698985 ⋅ 1 0 − 7 x 3 = − 5.17019741329 ⋅ 1 0 − 7 x_{3} = -5.17019741329 \cdot 10^{-7} x 3 = − 5.17019741329 ⋅ 1 0 − 7 x 4 = 5.15699587891 ⋅ 1 0 − 7 x_{4} = 5.15699587891 \cdot 10^{-7} x 4 = 5.15699587891 ⋅ 1 0 − 7 x 5 = 5.16724098147 ⋅ 1 0 − 7 x_{5} = 5.16724098147 \cdot 10^{-7} x 5 = 5.16724098147 ⋅ 1 0 − 7 x 6 = − 5.15003274155 ⋅ 1 0 − 7 x_{6} = -5.15003274155 \cdot 10^{-7} x 6 = − 5.15003274155 ⋅ 1 0 − 7 x 7 = 5.16652062556 ⋅ 1 0 − 7 x_{7} = 5.16652062556 \cdot 10^{-7} x 7 = 5.16652062556 ⋅ 1 0 − 7 x 8 = 5.1474619973 ⋅ 1 0 − 7 x_{8} = 5.1474619973 \cdot 10^{-7} x 8 = 5.1474619973 ⋅ 1 0 − 7 x 9 = 5.16944319354 ⋅ 1 0 − 7 x_{9} = 5.16944319354 \cdot 10^{-7} x 9 = 5.16944319354 ⋅ 1 0 − 7 x 10 = − 5.15947984497 ⋅ 1 0 − 7 x_{10} = -5.15947984497 \cdot 10^{-7} x 10 = − 5.15947984497 ⋅ 1 0 − 7 x 11 = 5.16925743772 ⋅ 1 0 − 7 x_{11} = 5.16925743772 \cdot 10^{-7} x 11 = 5.16925743772 ⋅ 1 0 − 7 x 12 = − 5.16158679838 ⋅ 1 0 − 7 x_{12} = -5.16158679838 \cdot 10^{-7} x 12 = − 5.16158679838 ⋅ 1 0 − 7 x 13 = 5.17061149485 ⋅ 1 0 − 7 x_{13} = 5.17061149485 \cdot 10^{-7} x 13 = 5.17061149485 ⋅ 1 0 − 7 x 14 = 5.17008873848 ⋅ 1 0 − 7 x_{14} = 5.17008873848 \cdot 10^{-7} x 14 = 5.17008873848 ⋅ 1 0 − 7 x 15 = − 5.16450869365 ⋅ 1 0 − 7 x_{15} = -5.16450869365 \cdot 10^{-7} x 15 = − 5.16450869365 ⋅ 1 0 − 7 x 16 = − 5.16749009437 ⋅ 1 0 − 7 x_{16} = -5.16749009437 \cdot 10^{-7} x 16 = − 5.16749009437 ⋅ 1 0 − 7 x 17 = 5.12085664368 ⋅ 1 0 − 7 x_{17} = 5.12085664368 \cdot 10^{-7} x 17 = 5.12085664368 ⋅ 1 0 − 7 x 18 = 5.17036317847 ⋅ 1 0 − 7 x_{18} = 5.17036317847 \cdot 10^{-7} x 18 = 5.17036317847 ⋅ 1 0 − 7 x 19 = − 5.1638968442 ⋅ 1 0 − 7 x_{19} = -5.1638968442 \cdot 10^{-7} x 19 = − 5.1638968442 ⋅ 1 0 − 7 x 20 = 5.13103589917 ⋅ 1 0 − 7 x_{20} = 5.13103589917 \cdot 10^{-7} x 20 = 5.13103589917 ⋅ 1 0 − 7 x 21 = − 5.16556066737 ⋅ 1 0 − 7 x_{21} = -5.16556066737 \cdot 10^{-7} x 21 = − 5.16556066737 ⋅ 1 0 − 7 x 22 = − 5.12936213006 ⋅ 1 0 − 7 x_{22} = -5.12936213006 \cdot 10^{-7} x 22 = − 5.12936213006 ⋅ 1 0 − 7 x 23 = − 5.15268153985 ⋅ 1 0 − 7 x_{23} = -5.15268153985 \cdot 10^{-7} x 23 = − 5.15268153985 ⋅ 1 0 − 7 x 24 = 5.16517572309 ⋅ 1 0 − 7 x_{24} = 5.16517572309 \cdot 10^{-7} x 24 = 5.16517572309 ⋅ 1 0 − 7 x 25 = 5.1552531361 ⋅ 1 0 − 7 x_{25} = 5.1552531361 \cdot 10^{-7} x 25 = 5.1552531361 ⋅ 1 0 − 7 x 26 = − 5.16060523598 ⋅ 1 0 − 7 x_{26} = -5.16060523598 \cdot 10^{-7} x 26 = − 5.16060523598 ⋅ 1 0 − 7 x 27 = 5.16178307961 ⋅ 1 0 − 7 x_{27} = 5.16178307961 \cdot 10^{-7} x 27 = 5.16178307961 ⋅ 1 0 − 7 x 28 = 5.16611223038 ⋅ 1 0 − 7 x_{28} = 5.16611223038 \cdot 10^{-7} x 28 = 5.16611223038 ⋅ 1 0 − 7 x 29 = 5.16262442027 ⋅ 1 0 − 7 x_{29} = 5.16262442027 \cdot 10^{-7} x 29 = 5.16262442027 ⋅ 1 0 − 7 x 30 = 5.16838707766 ⋅ 1 0 − 7 x_{30} = 5.16838707766 \cdot 10^{-7} x 30 = 5.16838707766 ⋅ 1 0 − 7 x 31 = − 5.17070048267 ⋅ 1 0 − 7 x_{31} = -5.17070048267 \cdot 10^{-7} x 31 = − 5.17070048267 ⋅ 1 0 − 7 x 32 = − 4.30364656326 ⋅ 1 0 − 7 x_{32} = -4.30364656326 \cdot 10^{-7} x 32 = − 4.30364656326 ⋅ 1 0 − 7 x 33 = − 5.11844604597 ⋅ 1 0 − 7 x_{33} = -5.11844604597 \cdot 10^{-7} x 33 = − 5.11844604597 ⋅ 1 0 − 7 x 34 = 5.17094257031 ⋅ 1 0 − 7 x_{34} = 5.17094257031 \cdot 10^{-7} x 34 = 5.17094257031 ⋅ 1 0 − 7 x 35 = − 5.16245003273 ⋅ 1 0 − 7 x_{35} = -5.16245003273 \cdot 10^{-7} x 35 = − 5.16245003273 ⋅ 1 0 − 7 x 36 = 5.16994040733 ⋅ 1 0 − 7 x_{36} = 5.16994040733 \cdot 10^{-7} x 36 = 5.16994040733 ⋅ 1 0 − 7 x 37 = 5.16785601281 ⋅ 1 0 − 7 x_{37} = 5.16785601281 \cdot 10^{-7} x 37 = 5.16785601281 ⋅ 1 0 − 7 x 38 = − 5.1664321265 ⋅ 1 0 − 7 x_{38} = -5.1664321265 \cdot 10^{-7} x 38 = − 5.1664321265 ⋅ 1 0 − 7 x 39 = − 5.15484938036 ⋅ 1 0 − 7 x_{39} = -5.15484938036 \cdot 10^{-7} x 39 = − 5.15484938036 ⋅ 1 0 − 7 x 40 = 5.16403709633 ⋅ 1 0 − 7 x_{40} = 5.16403709633 \cdot 10^{-7} x 40 = 5.16403709633 ⋅ 1 0 − 7 x 41 = 5.17083723206 ⋅ 1 0 − 7 x_{41} = 5.17083723206 \cdot 10^{-7} x 41 = 5.17083723206 ⋅ 1 0 − 7 x 42 = 5.15973418854 ⋅ 1 0 − 7 x_{42} = 5.15973418854 \cdot 10^{-7} x 42 = 5.15973418854 ⋅ 1 0 − 7 x 43 = − 5.16779080768 ⋅ 1 0 − 7 x_{43} = -5.16779080768 \cdot 10^{-7} x 43 = − 5.16779080768 ⋅ 1 0 − 7 x 44 = − 5.16921311381 ⋅ 1 0 − 7 x_{44} = -5.16921311381 \cdot 10^{-7} x 44 = − 5.16921311381 ⋅ 1 0 − 7 x 45 = 5.15847080388 ⋅ 1 0 − 7 x_{45} = 5.15847080388 \cdot 10^{-7} x 45 = 5.15847080388 ⋅ 1 0 − 7 x 46 = 5.17022947356 ⋅ 1 0 − 7 x_{46} = 5.17022947356 \cdot 10^{-7} x 46 = 5.17022947356 ⋅ 1 0 − 7 x 47 = 0 x_{47} = 0 x 47 = 0 x 48 = 5.16862627912 ⋅ 1 0 − 7 x_{48} = 5.16862627912 \cdot 10^{-7} x 48 = 5.16862627912 ⋅ 1 0 − 7 x 49 = 5.1696183741 ⋅ 1 0 − 7 x_{49} = 5.1696183741 \cdot 10^{-7} x 49 = 5.1696183741 ⋅ 1 0 − 7 x 50 = − 5.16506053036 ⋅ 1 0 − 7 x_{50} = -5.16506053036 \cdot 10^{-7} x 50 = − 5.16506053036 ⋅ 1 0 − 7 x 51 = 5.17049036454 ⋅ 1 0 − 7 x_{51} = 5.17049036454 \cdot 10^{-7} x 51 = 5.17049036454 ⋅ 1 0 − 7 x 52 = − 5.1700550177 ⋅ 1 0 − 7 x_{52} = -5.1700550177 \cdot 10^{-7} x 52 = − 5.1700550177 ⋅ 1 0 − 7 x 53 = 5.17113978284 ⋅ 1 0 − 7 x_{53} = 5.17113978284 \cdot 10^{-7} x 53 = 5.17113978284 ⋅ 1 0 − 7 x 54 = 5.14344379598 ⋅ 1 0 − 7 x_{54} = 5.14344379598 \cdot 10^{-7} x 54 = 5.14344379598 ⋅ 1 0 − 7 x 55 = 5.16463549874 ⋅ 1 0 − 7 x_{55} = 5.16463549874 \cdot 10^{-7} x 55 = 5.16463549874 ⋅ 1 0 − 7 x 56 = − 5.07332233253 ⋅ 1 0 − 7 x_{56} = -5.07332233253 \cdot 10^{-7} x 56 = − 5.07332233253 ⋅ 1 0 − 7 x 57 = − 5.16880014858 ⋅ 1 0 − 7 x_{57} = -5.16880014858 \cdot 10^{-7} x 57 = − 5.16880014858 ⋅ 1 0 − 7 x 58 = 4.47856635141 ⋅ 1 0 − 7 x_{58} = 4.47856635141 \cdot 10^{-7} x 58 = 4.47856635141 ⋅ 1 0 − 7 x 59 = − 5.17091831446 ⋅ 1 0 − 7 x_{59} = -5.17091831446 \cdot 10^{-7} x 59 = − 5.17091831446 ⋅ 1 0 − 7 x 60 = − 5.10167190419 ⋅ 1 0 − 7 x_{60} = -5.10167190419 \cdot 10^{-7} x 60 = − 5.10167190419 ⋅ 1 0 − 7 x 61 = 5.16337075167 ⋅ 1 0 − 7 x_{61} = 5.16337075167 \cdot 10^{-7} x 61 = 5.16337075167 ⋅ 1 0 − 7 x 62 = − 5.16974639968 ⋅ 1 0 − 7 x_{62} = -5.16974639968 \cdot 10^{-7} x 62 = − 5.16974639968 ⋅ 1 0 − 7 x 63 = 5.15316494599 ⋅ 1 0 − 7 x_{63} = 5.15316494599 \cdot 10^{-7} x 63 = 5.15316494599 ⋅ 1 0 − 7 x 64 = − 5.14251189813 ⋅ 1 0 − 7 x_{64} = -5.14251189813 \cdot 10^{-7} x 64 = − 5.14251189813 ⋅ 1 0 − 7 x 65 = − 5.16681394199 ⋅ 1 0 − 7 x_{65} = -5.16681394199 \cdot 10^{-7} x 65 = − 5.16681394199 ⋅ 1 0 − 7 x 66 = − 5.16321481286 ⋅ 1 0 − 7 x_{66} = -5.16321481286 \cdot 10^{-7} x 66 = − 5.16321481286 ⋅ 1 0 − 7 x 67 = − 5.16901308889 ⋅ 1 0 − 7 x_{67} = -5.16901308889 \cdot 10^{-7} x 67 = − 5.16901308889 ⋅ 1 0 − 7 x 68 = − 5.14673047872 ⋅ 1 0 − 7 x_{68} = -5.14673047872 \cdot 10^{-7} x 68 = − 5.14673047872 ⋅ 1 0 − 7 x 69 = − 5.16857301149 ⋅ 1 0 − 7 x_{69} = -5.16857301149 \cdot 10^{-7} x 69 = − 5.16857301149 ⋅ 1 0 − 7 x 70 = − 5.16990489394 ⋅ 1 0 − 7 x_{70} = -5.16990489394 \cdot 10^{-7} x 70 = − 5.16990489394 ⋅ 1 0 − 7 x 71 = 5.16885015661 ⋅ 1 0 − 7 x_{71} = 5.16885015661 \cdot 10^{-7} x 71 = 5.16885015661 ⋅ 1 0 − 7 x 72 = 5.16978385212 ⋅ 1 0 − 7 x_{72} = 5.16978385212 \cdot 10^{-7} x 72 = 5.16978385212 ⋅ 1 0 − 7 x 73 = 5.16689557291 ⋅ 1 0 − 7 x_{73} = 5.16689557291 \cdot 10^{-7} x 73 = 5.16689557291 ⋅ 1 0 − 7 x 74 = − 5.17058374286 ⋅ 1 0 − 7 x_{74} = -5.17058374286 \cdot 10^{-7} x 74 = − 5.17058374286 ⋅ 1 0 − 7 x 75 = − 5.15665378951 ⋅ 1 0 − 7 x_{75} = -5.15665378951 \cdot 10^{-7} x 75 = − 5.15665378951 ⋅ 1 0 − 7 x 76 = − 5.16957881981 ⋅ 1 0 − 7 x_{76} = -5.16957881981 \cdot 10^{-7} x 76 = − 5.16957881981 ⋅ 1 0 − 7 x 77 = − 5.17111750366 ⋅ 1 0 − 7 x_{77} = -5.17111750366 \cdot 10^{-7} x 77 = − 5.17111750366 ⋅ 1 0 − 7 x 78 = 5.10540229109 ⋅ 1 0 − 7 x_{78} = 5.10540229109 \cdot 10^{-7} x 78 = 5.10540229109 ⋅ 1 0 − 7 x 79 = − 5.17033265928 ⋅ 1 0 − 7 x_{79} = -5.17033265928 \cdot 10^{-7} x 79 = − 5.17033265928 ⋅ 1 0 − 7 x 80 = − 5.15817739083 ⋅ 1 0 − 7 x_{80} = -5.15817739083 \cdot 10^{-7} x 80 = − 5.15817739083 ⋅ 1 0 − 7 x 81 = − 5.16833022228 ⋅ 1 0 − 7 x_{81} = -5.16833022228 \cdot 10^{-7} x 81 = − 5.16833022228 ⋅ 1 0 − 7 x 82 = − 5.16601596364 ⋅ 1 0 − 7 x_{82} = -5.16601596364 \cdot 10^{-7} x 82 = − 5.16601596364 ⋅ 1 0 − 7 x 83 = − 5.16807012128 ⋅ 1 0 − 7 x_{83} = -5.16807012128 \cdot 10^{-7} x 83 = − 5.16807012128 ⋅ 1 0 − 7 x 84 = − 5.17102008723 ⋅ 1 0 − 7 x_{84} = -5.17102008723 \cdot 10^{-7} x 84 = − 5.17102008723 ⋅ 1 0 − 7 x 85 = − 4.87919180695 ⋅ 1 0 − 7 x_{85} = -4.87919180695 \cdot 10^{-7} x 85 = − 4.87919180695 ⋅ 1 0 − 7 x 86 = 5.15062139131 ⋅ 1 0 − 7 x_{86} = 5.15062139131 \cdot 10^{-7} x 86 = 5.15062139131 ⋅ 1 0 − 7 x 87 = 5.16756017842 ⋅ 1 0 − 7 x_{87} = 5.16756017842 \cdot 10^{-7} x 87 = 5.16756017842 ⋅ 1 0 − 7 x 88 = 5.0797307782 ⋅ 1 0 − 7 x_{88} = 5.0797307782 \cdot 10^{-7} x 88 = 5.0797307782 ⋅ 1 0 − 7 x 89 = − 5.16940135591 ⋅ 1 0 − 7 x_{89} = -5.16940135591 \cdot 10^{-7} x 89 = − 5.16940135591 ⋅ 1 0 − 7 x 90 = 5.16566576467 ⋅ 1 0 − 7 x_{90} = 5.16566576467 \cdot 10^{-7} x 90 = 5.16566576467 ⋅ 1 0 − 7 x 91 = 4.91430447166 ⋅ 1 0 − 7 x_{91} = 4.91430447166 \cdot 10^{-7} x 91 = 4.91430447166 ⋅ 1 0 − 7 x 92 = − 5.17046127814 ⋅ 1 0 − 7 x_{92} = -5.17046127814 \cdot 10^{-7} x 92 = − 5.17046127814 ⋅ 1 0 − 7 x 93 = − 5.01791504831 ⋅ 1 0 − 7 x_{93} = -5.01791504831 \cdot 10^{-7} x 93 = − 5.01791504831 ⋅ 1 0 − 7 x 94 = − 5.16716545238 ⋅ 1 0 − 7 x_{94} = -5.16716545238 \cdot 10^{-7} x 94 = − 5.16716545238 ⋅ 1 0 − 7 x 95 = 5.16906012674 ⋅ 1 0 − 7 x_{95} = 5.16906012674 \cdot 10^{-7} x 95 = 5.16906012674 ⋅ 1 0 − 7 x 96 = − 5.13695794328 ⋅ 1 0 − 7 x_{96} = -5.13695794328 \cdot 10^{-7} x 96 = − 5.13695794328 ⋅ 1 0 − 7 x 97 = − 5.17081188793 ⋅ 1 0 − 7 x_{97} = -5.17081188793 \cdot 10^{-7} x 97 = − 5.17081188793 ⋅ 1 0 − 7 x 98 = 5.17104332331 ⋅ 1 0 − 7 x_{98} = 5.17104332331 \cdot 10^{-7} x 98 = 5.17104332331 ⋅ 1 0 − 7 x 99 = 5.13818240034 ⋅ 1 0 − 7 x_{99} = 5.13818240034 \cdot 10^{-7} x 99 = 5.13818240034 ⋅ 1 0 − 7 x 100 = 5.03088932062 ⋅ 1 0 − 7 x_{100} = 5.03088932062 \cdot 10^{-7} x 100 = 5.03088932062 ⋅ 1 0 − 7 x 101 = 5.16082776189 ⋅ 1 0 − 7 x_{101} = 5.16082776189 \cdot 10^{-7} x 101 = 5.16082776189 ⋅ 1 0 − 7
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x*atan(x).0 atan ( 0 ) 0 \operatorname{atan}{\left (0 \right )} 0 atan ( 0 ) Результат:f ( 0 ) = 0 f{\left (0 \right )} = 0 f ( 0 ) = 0 Точка:(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнениеd d x f ( x ) = 0 \frac{d}{d x} f{\left (x \right )} = 0 d x d f ( x ) = 0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:d d x f ( x ) = \frac{d}{d x} f{\left (x \right )} = d x d f ( x ) = Первая производная x x 2 + 1 + atan ( x ) = 0 \frac{x}{x^{2} + 1} + \operatorname{atan}{\left (x \right )} = 0 x 2 + 1 x + atan ( x ) = 0 Решаем это уравнение Корни этого ур-нияx 1 = 0 x_{1} = 0 x 1 = 0 Зн. экстремумы в точках:(0, 0) Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках:x 1 = 0 x_{1} = 0 x 1 = 0 Максимумов у функции нет Убывает на промежутках[0, oo) Возрастает на промежутках(-oo, 0]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнениеd 2 d x 2 f ( x ) = 0 \frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0 d x 2 d 2 f ( x ) = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: d 2 d x 2 f ( x ) = \frac{d^{2}}{d x^{2}} f{\left (x \right )} = d x 2 d 2 f ( x ) = Вторая производная 1 x 2 + 1 ( − 2 x 2 x 2 + 1 + 2 ) = 0 \frac{1}{x^{2} + 1} \left(- \frac{2 x^{2}}{x^{2} + 1} + 2\right) = 0 x 2 + 1 1 ( − x 2 + 1 2 x 2 + 2 ) = 0 Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oolim x → − ∞ ( x atan ( x ) ) = ∞ \lim_{x \to -\infty}\left(x \operatorname{atan}{\left (x \right )}\right) = \infty x → − ∞ lim ( x atan ( x ) ) = ∞ Возьмём предел значит, горизонтальной асимптоты слева не существуетlim x → ∞ ( x atan ( x ) ) = ∞ \lim_{x \to \infty}\left(x \operatorname{atan}{\left (x \right )}\right) = \infty x → ∞ lim ( x atan ( x ) ) = ∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x*atan(x), делённой на x при x->+oo и x ->-oolim x → − ∞ atan ( x ) = − π 2 \lim_{x \to -\infty} \operatorname{atan}{\left (x \right )} = - \frac{\pi}{2} x → − ∞ lim atan ( x ) = − 2 π Возьмём предел значит, уравнение наклонной асимптоты слева:y = − π x 2 y = - \frac{\pi x}{2} y = − 2 π x lim x → ∞ atan ( x ) = π 2 \lim_{x \to \infty} \operatorname{atan}{\left (x \right )} = \frac{\pi}{2} x → ∞ lim atan ( x ) = 2 π Возьмём предел значит, уравнение наклонной асимптоты справа:y = π x 2 y = \frac{\pi x}{2} y = 2 π x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем:x atan ( x ) = x atan ( x ) x \operatorname{atan}{\left (x \right )} = x \operatorname{atan}{\left (x \right )} x atan ( x ) = x atan ( x ) - Даx atan ( x ) = − x atan ( x ) x \operatorname{atan}{\left (x \right )} = - x \operatorname{atan}{\left (x \right )} x atan ( x ) = − x atan ( x ) - Нет значит, функция является чётной