График функции y = x*(12-x^2)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
         /      2\
f(x) = x*\12 - x /
f(x)=x(12x2)f{\left(x \right)} = x \left(12 - x^{2}\right)
График функции
02468-8-6-4-2-1010-20002000
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x(12x2)=0x \left(12 - x^{2}\right) = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=0x_{1} = 0
x2=23x_{2} = - 2 \sqrt{3}
x3=23x_{3} = 2 \sqrt{3}
Численное решение
x1=3.46410161513775x_{1} = -3.46410161513775
x2=3.46410161513775x_{2} = 3.46410161513775
x3=0x_{3} = 0
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x*(12 - x^2).
0(1202)0 \cdot \left(12 - 0^{2}\right)
Результат:
f(0)=0f{\left(0 \right)} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
123x2=012 - 3 x^{2} = 0
Решаем это уравнение
Корни этого ур-ния
x1=2x_{1} = -2
x2=2x_{2} = 2
Зн. экстремумы в точках:
(-2, -16)

(2, 16)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=2x_{1} = -2
Максимумы функции в точках:
x1=2x_{1} = 2
Убывает на промежутках
[2,2]\left[-2, 2\right]
Возрастает на промежутках
(,2][2,)\left(-\infty, -2\right] \cup \left[2, \infty\right)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
6x=0- 6 x = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(,0]\left(-\infty, 0\right]
Выпуклая на промежутках
[0,)\left[0, \infty\right)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x(12x2))=\lim_{x \to -\infty}\left(x \left(12 - x^{2}\right)\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x(12x2))=\lim_{x \to \infty}\left(x \left(12 - x^{2}\right)\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x*(12 - x^2), делённой на x при x->+oo и x ->-oo
limx(12x2)=\lim_{x \to -\infty}\left(12 - x^{2}\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(12x2)=\lim_{x \to \infty}\left(12 - x^{2}\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x(12x2)=x(12x2)x \left(12 - x^{2}\right) = - x \left(12 - x^{2}\right)
- Нет
x(12x2)=x(12x2)x \left(12 - x^{2}\right) = x \left(12 - x^{2}\right)
- Да
значит, функция
является
нечётной
График
График функции y = x*(12-x^2) /media/krcore-image-pods/hash/xy/3/ab/83e6aba678f4cd1620e9b664188d4.png