График y = f(x) = x*e^x^2 (х умножить на e в степени х в квадрате) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = x*e^x^2

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
          / 2\
          \x /
f(x) = x*E    
$$f{\left (x \right )} = e^{x^{2}} x$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$e^{x^{2}} x = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$
$$x_{2} = -3.32609132638 \cdot 10^{-19}$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x*E^(x^2).
$$0 e^{0^{2}}$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$e^{x^{2}} + 2 x^{2} e^{x^{2}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$2 x \left(2 x^{2} + 3\right) e^{x^{2}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0, oo)

Выпуклая на промежутках
(-oo, 0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(e^{x^{2}} x\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(e^{x^{2}} x\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x*E^(x^2), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty} e^{x^{2}} = \infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty} e^{x^{2}} = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$e^{x^{2}} x = - x e^{x^{2}}$$
- Нет
$$e^{x^{2}} x = - -1 x e^{x^{2}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной