График функции пересекает ось X при f = 0 значит надо решить уравнение: $$x \sin{\left (x \right )} + \cos{\left (x \right )} = 0$$ Решаем это уравнение Точки пересечения с осью X:
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x*sin(x) + cos(x). $$0 \sin{\left (0 \right )} + \cos{\left (0 \right )}$$ Результат: $$f{\left (0 \right )} = 1$$ Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left (x \right )} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left (x \right )} = $$ Первая производная $$x \cos{\left (x \right )} = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$ $$x_{2} = \frac{\pi}{2}$$ $$x_{3} = \frac{3 \pi}{2}$$ Зн. экстремумы в точках:
(0, 1)
pi pi
(--, --)
2 2
3*pi -3*pi
(----, -----)
2 2
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: $$x_{3} = 0$$ $$x_{3} = \frac{3 \pi}{2}$$ Максимумы функции в точках: $$x_{3} = \frac{\pi}{2}$$ Убывает на промежутках
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках
[97.3996388791, oo)
Выпуклая на промежутках
(-oo, -100.540910787]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo