График функции пересекает ось X при f = 0 значит надо решить уравнение: x(x−6)2=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=0 x2=6 Численное решение x1=0 x2=6
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x*(x - 6)^2. 0(−6)2 Результат: f(0)=0 Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная x(2x−12)+(x−6)2=0 Решаем это уравнение Корни этого ур-ния x1=2 x2=6 Зн. экстремумы в точках:
(2, 32)
(6, 0)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: x2=6 Максимумы функции в точках: x2=2 Убывает на промежутках
(-oo, 2] U [6, oo)
Возрастает на промежутках
[2, 6]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= Вторая производная 6(x−4)=0 Решаем это уравнение Корни этого ур-ния x1=4
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках
[4, oo)
Выпуклая на промежутках
(-oo, 4]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(x(x−6)2)=−∞ Возьмём предел значит, горизонтальной асимптоты слева не существует x→∞lim(x(x−6)2)=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x*(x - 6)^2, делённой на x при x->+oo и x ->-oo x→−∞lim(x−6)2=∞ Возьмём предел значит, наклонной асимптоты слева не существует x→∞lim(x−6)2=∞ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x(x−6)2=−x(−x−6)2 - Нет x(x−6)2=−−1x(−x−6)2 - Нет значит, функция не является ни чётной ни нечётной