График y = f(x) = x*(x-6)^2 (х умножить на (х минус 6) в квадрате) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = x*(x-6)^2

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
                2
f(x) = x*(x - 6) 
$$f{\left (x \right )} = x \left(x - 6\right)^{2}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x \left(x - 6\right)^{2} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = 6$$
Численное решение
$$x_{1} = 0$$
$$x_{2} = 6$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x*(x - 6)^2.
$$0 \left(-6\right)^{2}$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$x \left(2 x - 12\right) + \left(x - 6\right)^{2} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 2$$
$$x_{2} = 6$$
Зн. экстремумы в точках:
(2, 32)

(6, 0)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 6$$
Максимумы функции в точках:
$$x_{2} = 2$$
Убывает на промежутках
(-oo, 2] U [6, oo)

Возрастает на промежутках
[2, 6]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$6 \left(x - 4\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 4$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[4, oo)

Выпуклая на промежутках
(-oo, 4]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x \left(x - 6\right)^{2}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x \left(x - 6\right)^{2}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x*(x - 6)^2, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty} \left(x - 6\right)^{2} = \infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty} \left(x - 6\right)^{2} = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x \left(x - 6\right)^{2} = - x \left(- x - 6\right)^{2}$$
- Нет
$$x \left(x - 6\right)^{2} = - -1 x \left(- x - 6\right)^{2}$$
- Нет
значит, функция
не является
ни чётной ни нечётной