График функции пересекает ось X при f = 0 значит надо решить уравнение: $$x^{4} + \pi = 0$$ Решаем это уравнение Решения не найдено, может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^4 + pi. $$0^{4} + \pi$$ Результат: $$f{\left (0 \right )} = \pi$$ Точка:
(0, pi)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left (x \right )} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left (x \right )} = $$ Первая производная $$4 x^{3} = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$ Зн. экстремумы в точках:
(0, pi)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумов у функции нет Максимумов у функции нет Не изменяет значения на всей числовой оси
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$ Вторая производная $$12 x^{2} = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на всей числовой оси
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty}\left(x^{4} + \pi\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты слева не существует $$\lim_{x \to \infty}\left(x^{4} + \pi\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^4 + pi, делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{4} + \pi\right)\right) = -\infty$$ Возьмём предел значит, наклонной асимптоты слева не существует $$\lim_{x \to \infty}\left(\frac{1}{x} \left(x^{4} + \pi\right)\right) = \infty$$ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$x^{4} + \pi = x^{4} + \pi$$ - Да $$x^{4} + \pi = - x^{4} - \pi$$ - Нет значит, функция является чётной