Область определения функции
Точки, в которых функция точно неопределена:
x1=2
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
−x+2x2=0
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
x1=0
Численное решение
x1=0
x2=9.85841562554⋅10−7
x3=−8.43656474654⋅10−7
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^2/(2 - x).
−0+202
Результат:
f(0)=0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
dxdf(x)=0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
dxdf(x)=
Первая производная
(−x+2)2x2+−x+22x=0
Решаем это уравнение
Корни этого ур-ния
x1=0
x2=4
Зн. экстремумы в точках:
(0, 0)
(4, -8)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x2=0
Максимумы функции в точках:
x2=4
Убывает на промежутках
[0, 4]
Возрастает на промежутках
(-oo, 0] U [4, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
dx2d2f(x)=0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
dx2d2f(x)=
Вторая производная
x−21(−(x−2)22x2+x−24x−2)=0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
x→−∞lim(−x+2x2)=∞
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
x→∞lim(−x+2x2)=−∞
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^2/(2 - x), делённой на x при x->+oo и x ->-oo
x→−∞lim(−x+2x)=−1
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=−x
x→∞lim(−x+2x)=−1
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=−x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
−x+2x2=x+2x2
- Нет
−x+2x2=−x+2x2
- Нет
значит, функция
не является
ни чётной ни нечётной