Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x^{2} + \log{\left(x \right)} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = e^{- \frac{W\left(2\right)}{2}}$$
Численное решение
$$x_{1} = 0.652918640419205$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^2 + log(x).
$$0^{2} + \log{\left(0 \right)}$$
Результат:
$$f{\left(0 \right)} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left(x \right)} = $$
первая производная
$$2 x + \frac{1}{x} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
вторая производная
$$2 - \frac{1}{x^{2}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = - \frac{\sqrt{2}}{2}$$
$$x_{2} = \frac{\sqrt{2}}{2}$$
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
$$\left(-\infty, - \frac{\sqrt{2}}{2}\right] \cup \left[\frac{\sqrt{2}}{2}, \infty\right)$$
Выпуклая на промежутках
$$\left[- \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x^{2} + \log{\left(x \right)}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x^{2} + \log{\left(x \right)}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^2 + log(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{x^{2} + \log{\left(x \right)}}{x}\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{x^{2} + \log{\left(x \right)}}{x}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x^{2} + \log{\left(x \right)} = x^{2} + \log{\left(- x \right)}$$
- Нет
$$x^{2} + \log{\left(x \right)} = - x^{2} - \log{\left(- x \right)}$$
- Нет
значит, функция
не является
ни чётной ни нечётной