График y = f(x) = x^2+(|x|)-2 (х в квадрате плюс (модуль от х |) минус 2) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = x^2+(|x|)-2

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        2          
f(x) = x  + |x| - 2
$$f{\left (x \right )} = x^{2} + \left|{x}\right| - 2$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x^{2} + \left|{x}\right| - 2 = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = -1$$
$$x_{2} = 1$$
Численное решение
$$x_{1} = 1$$
$$x_{2} = -1$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^2 + |x| - 2.
$$-2 + 0^{2} + \left|{0}\right|$$
Результат:
$$f{\left (0 \right )} = -2$$
Точка:
(0, -2)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$2 x + \operatorname{sign}{\left (x \right )} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x^{2} + \left|{x}\right| - 2\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x^{2} + \left|{x}\right| - 2\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^2 + |x| - 2, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{2} + \left|{x}\right| - 2\right)\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(x^{2} + \left|{x}\right| - 2\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x^{2} + \left|{x}\right| - 2 = x^{2} + \left|{x}\right| - 2$$
- Да
$$x^{2} + \left|{x}\right| - 2 = - x^{2} - \left|{x}\right| + 2$$
- Нет
значит, функция
является
чётной