График функции пересекает ось X при f = 0 значит надо решить уравнение: x2+x−9=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=−21+237 x2=−237−21 Численное решение x1=−3.54138126514911 x2=2.54138126514911
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^2 + x - 1*9. (−1)9+02+0 Результат: f(0)=−9 Точка:
(0, -9)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= первая производная 2x+1=0 Решаем это уравнение Корни этого ур-ния x1=−21 Зн. экстремумы в точках:
(-1/2, -1/4 - 9)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: x1=−21 Максимумов у функции нет Убывает на промежутках [−21,∞) Возрастает на промежутках (−∞,−21]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= вторая производная 2=0 Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(x2+x−9)=∞ Возьмём предел значит, горизонтальной асимптоты слева не существует x→∞lim(x2+x−9)=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^2 + x - 1*9, делённой на x при x->+oo и x ->-oo x→−∞lim(xx2+x−9)=−∞ Возьмём предел значит, наклонной асимптоты слева не существует x→∞lim(xx2+x−9)=∞ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x2+x−9=x2−x−9 - Нет x2+x−9=−x2+x+9 - Нет значит, функция не является ни чётной ни нечётной