График y = f(x) = (x^2)*log(x) ((х в квадрате) умножить на логарифм от (х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = (x^2)*log(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        2       
f(x) = x *log(x)
$$f{\left (x \right )} = x^{2} \log{\left (x \right )}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x^{2} \log{\left (x \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = 1$$
Численное решение
$$x_{1} = 1$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^2*log(x).
$$0^{2} \log{\left (0 \right )}$$
Результат:
$$f{\left (0 \right )} = \mathrm{NaN}$$
- решений у ур-ния нет
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$2 x \log{\left (x \right )} + x = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = e^{- \frac{1}{2}}$$
Зн. экстремумы в точках:
          -1  
  -1/2  -e    
(e   , -----)
          2   


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = e^{- \frac{1}{2}}$$
Максимумов у функции нет
Убывает на промежутках
[exp(-1/2), oo)

Возрастает на промежутках
(-oo, exp(-1/2)]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$2 \log{\left (x \right )} + 3 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = e^{- \frac{3}{2}}$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[exp(-3/2), oo)

Выпуклая на промежутках
(-oo, exp(-3/2)]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x^{2} \log{\left (x \right )}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x^{2} \log{\left (x \right )}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^2*log(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(x \log{\left (x \right )}\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x \log{\left (x \right )}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x^{2} \log{\left (x \right )} = x^{2} \log{\left (- x \right )}$$
- Нет
$$x^{2} \log{\left (x \right )} = - x^{2} \log{\left (- x \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной