График функции пересекает ось X при f = 0 значит надо решить уравнение: $$\sqrt[8]{x} = 0$$ Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение $$x_{1} = 0$$ Численное решение $$x_{1} = 0$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^(1/8). $$\sqrt[8]{0}$$ Результат: $$f{\left (0 \right )} = 0$$ Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left (x \right )} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left (x \right )} = $$ Первая производная $$\frac{1}{8 x^{\frac{7}{8}}} = 0$$ Решаем это уравнение Решения не найдены, возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$ Вторая производная $$- \frac{7}{64 x^{\frac{15}{8}}} = 0$$ Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty} \sqrt[8]{x} = \infty \sqrt[8]{-1}$$ Возьмём предел значит, уравнение горизонтальной асимптоты слева: $$y = \infty \sqrt[8]{-1}$$ $$\lim_{x \to \infty} \sqrt[8]{x} = \infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^(1/8), делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty} \frac{1}{x^{\frac{7}{8}}} = 0$$ Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа $$\lim_{x \to \infty} \frac{1}{x^{\frac{7}{8}}} = 0$$ Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$\sqrt[8]{x} = \sqrt[8]{- x}$$ - Нет $$\sqrt[8]{x} = - \sqrt[8]{- x}$$ - Нет значит, функция не является ни чётной ни нечётной