График функции пересекает ось X при f = 0 значит надо решить уравнение: x5=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=0 Численное решение x1=0
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^5. 05 Результат: f(0)=0 Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= первая производная 5x4=0 Решаем это уравнение Корни этого ур-ния x1=0 Зн. экстремумы в точках:
(0, 0)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумов у функции нет Максимумов у функции нет Возрастает на всей числовой оси
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= вторая производная 20x3=0 Решаем это уравнение Корни этого ур-ния x1=0
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках [0,∞) Выпуклая на промежутках (−∞,0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞limx5=−∞ Возьмём предел значит, горизонтальной асимптоты слева не существует x→∞limx5=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^5, делённой на x при x->+oo и x ->-oo x→−∞limx4=∞ Возьмём предел значит, наклонной асимптоты слева не существует x→∞limx4=∞ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x5=−x5 - Нет x5=x5 - Да значит, функция является нечётной