График функции пересекает ось X при f = 0 значит надо решить уравнение: $$x^{5} - 2 = 0$$ Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение $$x_{1} = \sqrt[5]{2}$$ Численное решение $$x_{1} = 1.14869835499704$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^5 - 1*2. $$\left(-1\right) 2 + 0^{5}$$ Результат: $$f{\left(0 \right)} = -2$$ Точка:
(0, -2)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left(x \right)} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left(x \right)} = $$ первая производная $$5 x^{4} = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$ Зн. экстремумы в точках:
(0, -1*2)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумов у функции нет Максимумов у функции нет Не изменяет значения на всей числовой оси
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$ вторая производная $$20 x^{3} = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках $$\left[0, \infty\right)$$ Выпуклая на промежутках $$\left(-\infty, 0\right]$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty}\left(x^{5} - 2\right) = -\infty$$ Возьмём предел значит, горизонтальной асимптоты слева не существует $$\lim_{x \to \infty}\left(x^{5} - 2\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^5 - 1*2, делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty}\left(\frac{x^{5} - 2}{x}\right) = \infty$$ Возьмём предел значит, наклонной асимптоты слева не существует $$\lim_{x \to \infty}\left(\frac{x^{5} - 2}{x}\right) = \infty$$ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$x^{5} - 2 = - x^{5} - 2$$ - Нет $$x^{5} - 2 = x^{5} + 2$$ - Нет значит, функция не является ни чётной ни нечётной