График функции y = x^3-25*x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        3       
f(x) = x  - 25*x
f(x)=x325xf{\left(x \right)} = x^{3} - 25 x
График функции
02468-8-6-4-2-1010-20002000
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x325x=0x^{3} - 25 x = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=5x_{1} = -5
x2=0x_{2} = 0
x3=5x_{3} = 5
Численное решение
x1=5x_{1} = 5
x2=0x_{2} = 0
x3=5x_{3} = -5
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 - 25*x.
032500^{3} - 25 \cdot 0
Результат:
f(0)=0f{\left(0 \right)} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
3x225=03 x^{2} - 25 = 0
Решаем это уравнение
Корни этого ур-ния
x1=533x_{1} = - \frac{5 \sqrt{3}}{3}
x2=533x_{2} = \frac{5 \sqrt{3}}{3}
Зн. экстремумы в точках:
      ___        ___ 
 -5*\/ 3   250*\/ 3  
(--------, ---------)
    3          9     

     ___         ___ 
 5*\/ 3   -250*\/ 3  
(-------, ----------)
    3         9      


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=533x_{1} = \frac{5 \sqrt{3}}{3}
Максимумы функции в точках:
x1=533x_{1} = - \frac{5 \sqrt{3}}{3}
Убывает на промежутках
(,533][533,)\left(-\infty, - \frac{5 \sqrt{3}}{3}\right] \cup \left[\frac{5 \sqrt{3}}{3}, \infty\right)
Возрастает на промежутках
[533,533]\left[- \frac{5 \sqrt{3}}{3}, \frac{5 \sqrt{3}}{3}\right]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
6x=06 x = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0,)\left[0, \infty\right)
Выпуклая на промежутках
(,0]\left(-\infty, 0\right]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x325x)=\lim_{x \to -\infty}\left(x^{3} - 25 x\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x325x)=\lim_{x \to \infty}\left(x^{3} - 25 x\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 25*x, делённой на x при x->+oo и x ->-oo
limx(x325xx)=\lim_{x \to -\infty}\left(\frac{x^{3} - 25 x}{x}\right) = \infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(x325xx)=\lim_{x \to \infty}\left(\frac{x^{3} - 25 x}{x}\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x325x=x3+25xx^{3} - 25 x = - x^{3} + 25 x
- Нет
x325x=x325xx^{3} - 25 x = x^{3} - 25 x
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = x^3-25*x /media/krcore-image-pods/hash/xy/e/ee/f6305f3194404760e8ad1a4f2564b.png