График функции y = x^3-5*x^2

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        3      2
f(x) = x  - 5*x 
f(x)=x35x2f{\left (x \right )} = x^{3} - 5 x^{2}
График функции
-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.5-5050
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x35x2=0x^{3} - 5 x^{2} = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=0x_{1} = 0
x2=5x_{2} = 5
Численное решение
x1=0x_{1} = 0
x2=5x_{2} = 5
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 - 5*x^2.
0300^{3} - 0
Результат:
f(0)=0f{\left (0 \right )} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
3x210x=03 x^{2} - 10 x = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0
x2=103x_{2} = \frac{10}{3}
Зн. экстремумы в точках:
(0, 0)

       -500  
(10/3, -----)
         27  


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x2=103x_{2} = \frac{10}{3}
Максимумы функции в точках:
x2=0x_{2} = 0
Убывает на промежутках
(-oo, 0] U [10/3, oo)

Возрастает на промежутках
[0, 10/3]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
2(3x5)=02 \left(3 x - 5\right) = 0
Решаем это уравнение
Корни этого ур-ния
x1=53x_{1} = \frac{5}{3}

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[5/3, oo)

Выпуклая на промежутках
(-oo, 5/3]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x35x2)=\lim_{x \to -\infty}\left(x^{3} - 5 x^{2}\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x35x2)=\lim_{x \to \infty}\left(x^{3} - 5 x^{2}\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 5*x^2, делённой на x при x->+oo и x ->-oo
limx(1x(x35x2))=\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{3} - 5 x^{2}\right)\right) = \infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(1x(x35x2))=\lim_{x \to \infty}\left(\frac{1}{x} \left(x^{3} - 5 x^{2}\right)\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x35x2=x35x2x^{3} - 5 x^{2} = - x^{3} - 5 x^{2}
- Нет
x35x2=1x35x2x^{3} - 5 x^{2} = - -1 x^{3} - - 5 x^{2}
- Нет
значит, функция
не является
ни чётной ни нечётной