График функции y = x^3-15*x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        3       
f(x) = x  - 15*x
f(x)=x315xf{\left(x \right)} = x^{3} - 15 x
График функции
02468-8-6-4-2-1010-20002000
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x315x=0x^{3} - 15 x = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=0x_{1} = 0
x2=15x_{2} = - \sqrt{15}
x3=15x_{3} = \sqrt{15}
Численное решение
x1=0x_{1} = 0
x2=3.87298334620742x_{2} = -3.87298334620742
x3=3.87298334620742x_{3} = 3.87298334620742
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 - 15*x.
031500^{3} - 15 \cdot 0
Результат:
f(0)=0f{\left(0 \right)} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
3x215=03 x^{2} - 15 = 0
Решаем это уравнение
Корни этого ур-ния
x1=5x_{1} = - \sqrt{5}
x2=5x_{2} = \sqrt{5}
Зн. экстремумы в точках:
    ___       ___ 
(-\/ 5, 10*\/ 5 )

   ___        ___ 
(\/ 5, -10*\/ 5 )


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=5x_{1} = \sqrt{5}
Максимумы функции в точках:
x1=5x_{1} = - \sqrt{5}
Убывает на промежутках
(,5][5,)\left(-\infty, - \sqrt{5}\right] \cup \left[\sqrt{5}, \infty\right)
Возрастает на промежутках
[5,5]\left[- \sqrt{5}, \sqrt{5}\right]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
6x=06 x = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0,)\left[0, \infty\right)
Выпуклая на промежутках
(,0]\left(-\infty, 0\right]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x315x)=\lim_{x \to -\infty}\left(x^{3} - 15 x\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x315x)=\lim_{x \to \infty}\left(x^{3} - 15 x\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 15*x, делённой на x при x->+oo и x ->-oo
limx(x315xx)=\lim_{x \to -\infty}\left(\frac{x^{3} - 15 x}{x}\right) = \infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(x315xx)=\lim_{x \to \infty}\left(\frac{x^{3} - 15 x}{x}\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x315x=x3+15xx^{3} - 15 x = - x^{3} + 15 x
- Нет
x315x=x315xx^{3} - 15 x = x^{3} - 15 x
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = x^3-15*x /media/krcore-image-pods/hash/xy/d/2d/7217b61c026ac5b75cd78d31b22fd.png