График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^3 - 15*x. $$0^{3} - 15 \cdot 0$$ Результат: $$f{\left(0 \right)} = 0$$ Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left(x \right)} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left(x \right)} = $$ первая производная $$3 x^{2} - 15 = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = - \sqrt{5}$$ $$x_{2} = \sqrt{5}$$ Зн. экстремумы в точках:
___ ___
(-\/ 5, 10*\/ 5 )
___ ___
(\/ 5, -10*\/ 5 )
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: $$x_{1} = \sqrt{5}$$ Максимумы функции в точках: $$x_{1} = - \sqrt{5}$$ Убывает на промежутках $$\left(-\infty, - \sqrt{5}\right] \cup \left[\sqrt{5}, \infty\right)$$ Возрастает на промежутках $$\left[- \sqrt{5}, \sqrt{5}\right]$$
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$ вторая производная $$6 x = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках $$\left[0, \infty\right)$$ Выпуклая на промежутках $$\left(-\infty, 0\right]$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty}\left(x^{3} - 15 x\right) = -\infty$$ Возьмём предел значит, горизонтальной асимптоты слева не существует $$\lim_{x \to \infty}\left(x^{3} - 15 x\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 15*x, делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty}\left(\frac{x^{3} - 15 x}{x}\right) = \infty$$ Возьмём предел значит, наклонной асимптоты слева не существует $$\lim_{x \to \infty}\left(\frac{x^{3} - 15 x}{x}\right) = \infty$$ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$x^{3} - 15 x = - x^{3} + 15 x$$ - Нет $$x^{3} - 15 x = x^{3} - 15 x$$ - Нет значит, функция не является ни чётной ни нечётной