Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x3+x+2=0
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
x1=−1
Численное решение
x1=−1
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 + x + 2.
03+2
Результат:
f(0)=2
Точка:
(0, 2)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
dxdf(x)=0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
dxdf(x)=
Первая производная
3x2+1=0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
dx2d2f(x)=0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
dx2d2f(x)=
Вторая производная
6x=0
Решаем это уравнение
Корни этого ур-ния
x1=0
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0, oo)
Выпуклая на промежутках
(-oo, 0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
x→−∞lim(x3+x+2)=−∞
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
x→∞lim(x3+x+2)=∞
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^3 + x + 2, делённой на x при x->+oo и x ->-oo
x→−∞lim(x1(x3+x+2))=∞
Возьмём предел
значит,
наклонной асимптоты слева не существует
x→∞lim(x1(x3+x+2))=∞
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x3+x+2=−x3−x+2
- Нет
x3+x+2=−−1x3−−x−2
- Нет
значит, функция
не является
ни чётной ни нечётной