График y = f(x) = x^3*(2-x) (х в кубе умножить на (2 минус х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = x^3*(2-x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        3        
f(x) = x *(2 - x)
$$f{\left (x \right )} = x^{3} \left(- x + 2\right)$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x^{3} \left(- x + 2\right) = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = 2$$
Численное решение
$$x_{1} = 0$$
$$x_{2} = 2$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3*(2 - x).
$$0^{3} \left(- 0 + 2\right)$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- x^{3} + 3 x^{2} \left(- x + 2\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = \frac{3}{2}$$
Зн. экстремумы в точках:
(0, 0)

      27 
(3/2, --)
      16 


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{2} = \frac{3}{2}$$
Убывает на промежутках
(-oo, 3/2]

Возрастает на промежутках
[3/2, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- 6 x \left(2 x - 2\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = 1$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0, 1]

Выпуклая на промежутках
(-oo, 0] U [1, oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x^{3} \left(- x + 2\right)\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x^{3} \left(- x + 2\right)\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^3*(2 - x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(x^{2} \left(- x + 2\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x^{2} \left(- x + 2\right)\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x^{3} \left(- x + 2\right) = - x^{3} \left(x + 2\right)$$
- Нет
$$x^{3} \left(- x + 2\right) = - -1 x^{3} \left(x + 2\right)$$
- Нет
значит, функция
не является
ни чётной ни нечётной