График y = f(x) = x^x (х в степени х) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = x^x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        x
f(x) = x 
$$f{\left (x \right )} = x^{x}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x^{x} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^x.
$$0^{0}$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$x^{x} \left(\log{\left (x \right )} + 1\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = e^{-1}$$
Зн. экстремумы в точках:
         -1 
  -1   -e   
(e , e    )


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = e^{-1}$$
Максимумов у функции нет
Убывает на промежутках
[exp(-1), oo)

Возрастает на промежутках
(-oo, exp(-1)]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$x^{x} \left(\left(\log{\left (x \right )} + 1\right)^{2} + \frac{1}{x}\right) = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} x^{x} = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty} x^{x} = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^x, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{x^{x}}{x}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{x^{x}}{x}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x^{x} = \left(- x\right)^{- x}$$
- Нет
$$x^{x} = - \left(- x\right)^{- x}$$
- Нет
значит, функция
не является
ни чётной ни нечётной