/ 1 e*a / -1\
|- ---------- + ---------- for And\a > -oo, a < oo, a != e /
< 1 + log(a) 1 + log(a)
|
\ 1 otherwise
$$\begin{cases} \frac{e a}{\log{\left(a \right)} + 1} - \frac{1}{\log{\left(a \right)} + 1} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq e^{-1} \\1 & \text{otherwise} \end{cases}$$
/ 1 e*a / -1\
|- ---------- + ---------- for And\a > -oo, a < oo, a != e /
< 1 + log(a) 1 + log(a)
|
\ 1 otherwise
$$\begin{cases} \frac{e a}{\log{\left(a \right)} + 1} - \frac{1}{\log{\left(a \right)} + 1} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq e^{-1} \\1 & \text{otherwise} \end{cases}$$
Ответ (Неопределённый)
[src] / // x x \
| || a *e -1|
| x x ||---------- for a != e |
| a *e dx = C + |<1 + log(a) |
| || |
/ || x otherwise |
\\ /
$$\int a^{x} e^{x}\, dx = C + \begin{cases} \frac{a^{x} e^{x}}{\log{\left(a \right)} + 1} & \text{for}\: a \neq e^{-1} \\x & \text{otherwise} \end{cases}$$