1
/ / -1
| | 1 for a = e
| x x |
| a *E dx = < 1 E*a
| |- ---------- + ---------- otherwise
/ | 1 + log(a) 1 + log(a)
0 \
$$\int_{0}^{1} e^{x} a^{x}\, dx = \begin{cases} 1 & \text{for}\: a = e^{-1} \\\frac{e a}{\log{\left (a \right )} + 1} - \frac{1}{\log{\left (a \right )} + 1} & \text{otherwise} \end{cases}$$
Ответ (Неопределённый)
[src] / // -1\
| || x for a = e |
| x x || |
| a *E dx = C + |< x x |
| || a *e |
/ ||---------- otherwise |
\\1 + log(a) /
$$\int e^{x} a^{x}\, dx = C + \begin{cases} x & \text{for}\: a = e^{-1} \\\frac{a^{x} e^{x}}{\log{\left (a \right )} + 1} & \text{otherwise} \end{cases}$$