Ответ (Неопределённый)
[src]$${{16\,\left(\int {{{x^2\,\left(\log \left(x^2+1\right)\right)^2
}\over{16\,x^2+16}}}{\;dx}+\int {{{\left(\log \left(x^2+1\right)
\right)^2}\over{16\,x^2+16}}}{\;dx}+4\,\int {{{x^2\,\log \left(x^2+1
\right)}\over{16\,x^2+16}}}{\;dx}+12\,\int {{{\arctan ^2\left({{1
}\over{x}}\right)\,x^2}\over{16\,x^2+16}}}{\;dx}+8\,\int {{{\arctan
\left({{1}\over{x}}\right)\,x}\over{16\,x^2+16}}}{\;dx}-12\,\left(-
{{\arctan ^3x}\over{48}}-{{\arctan \left({{1}\over{x}}\right)\,
\arctan ^2x}\over{16}}\right)+{{3\,\arctan ^2\left({{1}\over{x}}
\right)\,\arctan x}\over{4}}\right)-x\,\left(\log \left(x^2+1\right)
\right)^2+4\,{\rm atan2}\left(1 , x\right)^2\,x}\over{16}}$$