∫ Найти интеграл от y = f(x) = (atan(x))/x^2 dx ((арктангенс от (х)) делить на х в квадрате) - с подробным решением онлайн [Есть ответ!]

Интеграл (atan(x))/x^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1           
      /           
     |            
     |  atan(x)   
     |  ------- dx
     |      2     
     |     x      
     |            
    /             
    0             
    $$\int\limits_{0}^{1} \frac{\operatorname{atan}{\left(x \right)}}{x^{2}}\, dx$$
    Подробное решение
    1. Используем интегрирование по частям:

      пусть и пусть .

      Затем .

      Чтобы найти :

      1. Интеграл есть когда :

      Теперь решаем под-интеграл.

    2. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

      1. Есть несколько способов вычислить этот интеграл.

        Метод #1

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть .

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Метод #2

        1. Перепишите подынтегральное выражение:

        2. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть .

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            Таким образом, результат будет:

          1. Интеграл есть .

          Результат есть:

        Метод #3

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть .

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            Таким образом, результат будет:

          1. Интеграл есть .

          Результат есть:

        Метод #4

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть .

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            Таким образом, результат будет:

          1. Интеграл есть .

          Результат есть:

      Таким образом, результат будет:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
    oo
    $$\infty$$
    =
    =
    oo
    $$\infty$$
    Численный ответ [src]
    43.9584743803155
    Ответ (Неопределённый) [src]
                           /    1 \          
      /                 log|1 + --|          
     |                     |     2|          
     | atan(x)             \    x /   atan(x)
     | ------- dx = C - ----------- - -------
     |     2                 2           x   
     |    x                                  
     |                                       
    /                                        
    $$\int \frac{\operatorname{atan}{\left(x \right)}}{x^{2}}\, dx = C - \frac{\log{\left(1 + \frac{1}{x^{2}} \right)}}{2} - \frac{\operatorname{atan}{\left(x \right)}}{x}$$