1 4*cos(1) 8*log(2)*sin(1)
------------- - ------------- + ---------------
2 2 2
1 + 4*log (2) 1 + 4*log (2) 1 + 4*log (2)
$$- \frac{4 \cos{\left(1 \right)}}{1 + 4 \log{\left(2 \right)}^{2}} + \frac{1}{1 + 4 \log{\left(2 \right)}^{2}} + \frac{8 \log{\left(2 \right)} \sin{\left(1 \right)}}{1 + 4 \log{\left(2 \right)}^{2}}$$
1 4*cos(1) 8*log(2)*sin(1)
------------- - ------------- + ---------------
2 2 2
1 + 4*log (2) 1 + 4*log (2) 1 + 4*log (2)
$$- \frac{4 \cos{\left(1 \right)}}{1 + 4 \log{\left(2 \right)}^{2}} + \frac{1}{1 + 4 \log{\left(2 \right)}^{2}} + \frac{8 \log{\left(2 \right)} \sin{\left(1 \right)}}{1 + 4 \log{\left(2 \right)}^{2}}$$
Ответ (Неопределённый)
[src] /
| x x
| x 4 *cos(x) 2*4 *log(2)*sin(x)
| 4 *sin(x) dx = C - ------------- + ------------------
| 2 2
/ 1 + 4*log (2) 1 + 4*log (2)
$$\int 4^{x} \sin{\left(x \right)}\, dx = \frac{2 \cdot 4^{x} \log{\left(2 \right)} \sin{\left(x \right)}}{1 + 4 \log{\left(2 \right)}^{2}} - \frac{4^{x} \cos{\left(x \right)}}{1 + 4 \log{\left(2 \right)}^{2}} + C$$