Интеграл dx/9+x^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1              
      /              
     |               
     |  /  1    2\   
     |  |1*- + x | dx
     |  \  9     /   
     |               
    /                
    0                
    01(x2+119)dx\int\limits_{0}^{1} \left(x^{2} + 1 \cdot \frac{1}{9}\right)\, dx
    Подробное решение
    1. Интегрируем почленно:

      1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1} когда n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        119dx=x9\int 1 \cdot \frac{1}{9}\, dx = \frac{x}{9}

      Результат есть: x33+x9\frac{x^{3}}{3} + \frac{x}{9}

    2. Добавляем постоянную интегрирования:

      x33+x9+constant\frac{x^{3}}{3} + \frac{x}{9}+ \mathrm{constant}


    Ответ:

    x33+x9+constant\frac{x^{3}}{3} + \frac{x}{9}+ \mathrm{constant}

    График
    0.001.000.100.200.300.400.500.600.700.800.9002
    Ответ [src]
    4/9
    49\frac{4}{9}
    =
    =
    4/9
    49\frac{4}{9}
    Численный ответ [src]
    0.444444444444444
    Ответ (Неопределённый) [src]
      /                          
     |                      3    
     | /  1    2\          x    x
     | |1*- + x | dx = C + -- + -
     | \  9     /          3    9
     |                           
    /                            
    (x2+119)dx=C+x33+x9\int \left(x^{2} + 1 \cdot \frac{1}{9}\right)\, dx = C + \frac{x^{3}}{3} + \frac{x}{9}
    График
    Интеграл dx/9+x^2 (dx) /media/krcore-image-pods/hash/indefinite/7/3f/e9e45e6b96e31f7f7d62399a8b450.png