Интеграл 10/x^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1      
      /      
     |       
     |  10   
     |  -- dx
     |   2   
     |  x    
     |       
    /        
    0        
    0110x2dx\int_{0}^{1} \frac{10}{x^{2}}\, dx
    Подробное решение
    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

      10x2dx=101x2dx\int \frac{10}{x^{2}}\, dx = 10 \int \frac{1}{x^{2}}\, dx

      1. Перепишите подынтегральное выражение:

        1x2=1x2\frac{1}{x^{2}} = \frac{1}{x^{2}}

      2. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

        1x2dx=1x\int \frac{1}{x^{2}}\, dx = - \frac{1}{x}

      Таким образом, результат будет: 10x- \frac{10}{x}

    2. Добавляем постоянную интегрирования:

      10x+constant- \frac{10}{x}+ \mathrm{constant}


    Ответ:

    10x+constant- \frac{10}{x}+ \mathrm{constant}

    График
    02468-8-6-4-2-10102000-1000
    Ответ [src]
      1           
      /           
     |            
     |  10        
     |  -- dx = oo
     |   2        
     |  x         
     |            
    /             
    0             
    %a{\it \%a}
    Численный ответ [src]
    1.3793236779486e+20
    Ответ (Неопределённый) [src]
      /              
     |               
     | 10          10
     | -- dx = C - --
     |  2          x 
     | x             
     |               
    /                
    10x-{{10}\over{x}}