Интеграл 2*x-7 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |  (2*x - 7) dx
     |              
    /               
    0               
    01(2x7)dx\int\limits_{0}^{1} \left(2 x - 7\right)\, dx
    Подробное решение
    1. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

        1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1} когда n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        Таким образом, результат будет: x2x^{2}

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        ((1)7)dx=7x\int \left(\left(-1\right) 7\right)\, dx = - 7 x

      Результат есть: x27xx^{2} - 7 x

    2. Теперь упростить:

      x(x7)x \left(x - 7\right)

    3. Добавляем постоянную интегрирования:

      x(x7)+constantx \left(x - 7\right)+ \mathrm{constant}


    Ответ:

    x(x7)+constantx \left(x - 7\right)+ \mathrm{constant}

    График
    0.001.000.100.200.300.400.500.600.700.800.90-1010
    Ответ [src]
    -6
    6-6
    =
    =
    -6
    6-6
    Численный ответ [src]
    -6.0
    Ответ (Неопределённый) [src]
      /                           
     |                     2      
     | (2*x - 7) dx = C + x  - 7*x
     |                            
    /                             
    (2x7)dx=C+x27x\int \left(2 x - 7\right)\, dx = C + x^{2} - 7 x
    График
    Интеграл 2*x-7 (dx) /media/krcore-image-pods/hash/indefinite/e/58/a4e755393a945770586dec8365924.png