Интеграл (2*x+1)^4 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1              
      /              
     |               
     |           4   
     |  (2*x + 1)  dx
     |               
    /                
    0                
    01(2x+1)4dx\int_{0}^{1} \left(2 x + 1\right)^{4}\, dx
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть u=2x+1u = 2 x + 1.

        Тогда пусть du=2dxdu = 2 dx и подставим du2\frac{du}{2}:

        u4du\int u^{4}\, du

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          u4du=12u4du\int u^{4}\, du = \frac{1}{2} \int u^{4}\, du

          1. Интеграл unu^{n} есть un+1n+1\frac{u^{n + 1}}{n + 1}:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          Таким образом, результат будет: u510\frac{u^{5}}{10}

        Если сейчас заменить uu ещё в:

        110(2x+1)5\frac{1}{10} \left(2 x + 1\right)^{5}

      Метод #2

      1. Перепишите подынтегральное выражение:

        (2x+1)4=16x4+32x3+24x2+8x+1\left(2 x + 1\right)^{4} = 16 x^{4} + 32 x^{3} + 24 x^{2} + 8 x + 1

      2. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          16x4dx=16x4dx\int 16 x^{4}\, dx = 16 \int x^{4}\, dx

          1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

            x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

          Таким образом, результат будет: 16x55\frac{16 x^{5}}{5}

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          32x3dx=32x3dx\int 32 x^{3}\, dx = 32 \int x^{3}\, dx

          1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

            x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

          Таким образом, результат будет: 8x48 x^{4}

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          24x2dx=24x2dx\int 24 x^{2}\, dx = 24 \int x^{2}\, dx

          1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

            x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

          Таким образом, результат будет: 8x38 x^{3}

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          8xdx=8xdx\int 8 x\, dx = 8 \int x\, dx

          1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          Таким образом, результат будет: 4x24 x^{2}

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          1dx=x\int 1\, dx = x

        Результат есть: 16x55+8x4+8x3+4x2+x\frac{16 x^{5}}{5} + 8 x^{4} + 8 x^{3} + 4 x^{2} + x

    2. Теперь упростить:

      110(2x+1)5\frac{1}{10} \left(2 x + 1\right)^{5}

    3. Добавляем постоянную интегрирования:

      110(2x+1)5+constant\frac{1}{10} \left(2 x + 1\right)^{5}+ \mathrm{constant}


    Ответ:

    110(2x+1)5+constant\frac{1}{10} \left(2 x + 1\right)^{5}+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-500000500000
    Ответ [src]
      1                      
      /                      
     |                       
     |           4           
     |  (2*x + 1)  dx = 121/5
     |                       
    /                        
    0                        
    1215{{121}\over{5}}
    Численный ответ [src]
    24.2
    Ответ (Неопределённый) [src]
      /                              
     |                              5
     |          4          (2*x + 1) 
     | (2*x + 1)  dx = C + ----------
     |                         10    
    /                                
    16x55+8x4+8x3+4x2+x{{16\,x^5}\over{5}}+8\,x^4+8\,x^3+4\,x^2+x